
Lab 09 - Working with Containers

Introduction

Containers are semi-isolated environments in which applications, or parts of applications,

can run. Unlike VMs which run entirely separate OSes, containers directly share resources

with the OS of the server that hosts the containers. This makes containers more efficient

than VMs because each containerized environment does not require a complete guest OS.

Moreover, containers are isolated at the process level from other containers, as well as

non-containerized processes that run on the server. This isolation makes containers more

secure than multiple applications that run directly on a host server. Each container can

have different environment parameters, rather than all containers sharing a common

configuration.

Technology to deploy applications inside containers has existed since the introduction of

the Unix chroot call in the 1970s. Containers became massively popular in the mid-2010s

with the introduction of Docker and Kubernetes, which provided tooling that made it easier

for developers to create and manage containerized applications.

 To learn more about containers and their benefits, refer to the course content and see

Containers 101 course on KubeAcademy

Page 1Lab 09 - Working with Containers

https://kube.academy/courses/containers-101
https://kube.academy/

TASKS

Task 1 - Run your first container

In this lab, you will run your first Docker Container. For this lab, you will use a dedicated

Windows 10 Desktop with all of the tools and applications needed to build run containers,

and Manage a Kubernetes Environment. This Desktop can be accessed via RDP from within

your VDI desktop session (There is an RDP shortcut on the VDI desktop to it). The windows

10 Desktop has Docker Desktop among other tools installed.

Docker Desktop is an easy-to-install application for your Mac or Windows environment that

enables you to build and share containerized applications and microservices.

It provides a simple interface that enables you to manage your containers, applications, and

images directly from your machine without having to use the CLI to perform core actions.

Docker Desktop includes:

• Docker Engine

• Docker CLI client

• Docker Compose

• Docker Content Trust

• Kubernetes

Page 2Lab 09 - Working with Containers

• Credential Helper

Docker Desktop works with your choice of development tools and languages and gives you

access to a vast library of certified images and templates in Docker Hub. This enables

development teams to extend their environment to rapidly auto-build, continuously

integrate, and collaborate using a secure repository.

 Note: Docker Desktop is free for small businesses, personal use, education, and non-

commercial open source projects. See https://www.docker.com/blog/updating-

product-subscriptions/ for more information.

1. From your Laptop/desktop open a new Google Chrome Incognito window
2. Type https://vdi.27virtual.net in the browser address bar
3. Click the checkbox "Check here to skip this screen and always use HTML Access"
4. Click VMware Horizon HTML Access
5. When prompted log in as: (Get the login details from the Student Assignment

Spreadsheet)
• Username: VMCExpert#-XX (where # is the Environment ID and XX is your student

number)
• Password: {Password-Provided-by-Instructor}

6. Select the available Desktop pool
7. Once the VDI Desktop has loaded, Click on the "Tanzu Lab Desktop" RDP Shortcut

Page 3Lab 09 - Working with Containers

https://hub.docker.com/
https://www.docker.com/blog/updating-product-subscriptions/
https://www.docker.com/blog/updating-product-subscriptions/
https://vdi.27virtual.net/

8. If prompted for a password to the RDP session, type the following
• Password: {Password-Provided-by-Instructor}

Page 4Lab 09 - Working with Containers

 NOTE: From this point on all lab steps must be performed from this RDP session not

your laptop/desktop or the VDI session. The tools needed to are only installed here.

 Once you've successfully logged into the Tanzu desktop, it takes a min or two for

Docker Desktop to start. Please wait for Docker to start before proceeding

9. Once Docker has started successfully, notice that there are currently no Containers. To
confirm this, in the left pane click
• Containers

10. From the Tanzu Desktop Taskbar or Start menu click Windows Terminal.

 If prompted, Click Yes to process

11. At the Windows Terminal Prompt Type the following to run the Docker Getting Started
application as a container:

<p>docker run -d -p 80:80 docker/getting-started</p>

 Click to copy

Page 5Lab 09 - Working with Containers

 NOTE:

-d = detached mode

-p = port mapping [host port]:[container port]

docker/ = docker registry

getting-started = container name

12. Once the command completes successfully, you'll notice the Docker Desktop User Interface
now shows 1 container

13. From the Tanzu Desktop (RDP session), Launch Firefox, Edge or Brave
14. In the browser Address bar type:

• http://localhost

Page 6Lab 09 - Working with Containers

http://localhost/

15. In the Docker Desktop User Interface, Select your Docker Getting Started application
16. Click Stop, to stop the application

Page 7Lab 09 - Working with Containers

Task 2 - Build your first Container Image

In this task, you will build your container image based on nginx and will run this image on

your Tanzu Desktop. This lab uses a pre-built Dockerfile and two HTML files, both of which

are found in C:\Lab_files\VCE\Containers.

A Dockerfile is a text document that contains all the commands a user could call on

the command line to assemble an image. Using docker build users can create an

automated build that executes several command-line instructions in succession. This page

describes the commands you can use in a Dockerfile

A Docker image is a read-only template with instructions for creating a Docker container.

Often, an image is based on another image, with some additional customization. For

example, you may build an image that is based on the ubuntu image but installs the Apache

web server and your application, as well as the configuration details needed to make your

application run.

You might create your own images or you might only use those created by others and

published in a registry. To build your image, you create a Dockerfile with a simple syntax for

defining the steps needed to create the image and run it. Each instruction in a Dockerfile

creates a layer in the image. When you change the Dockerfile and rebuild the image, only

those layers which have changed are rebuilt. This is part of what makes images so

lightweight, small, and fast when compared to other virtualization technologies.

1. In the Tanzu RDP Session Click Lab Files on the desktop
2. Click VCE, then Containers to view the Contents of C:\Lab_files\VCE\Containers

Page 8Lab 09 - Working with Containers

3. You'll notice 2 HTML files and 1 Dockerfile
4. Right-Click Index.html and Edit with Notepad ++
5. In Notepad ++ Replace {VMCEPERT#-XX} with your First and Last name
6. Click File --> Save Menu to save the file

7. Back in windows Explorer, right-click the dockerfile and Edit with Notepad ++, to review
how a container is built

 Test your understanding:

• What is the base layer?

• What port will the container be available on?

• Is there any way to re-write this Dockerfile to reduce the number of layers it contains?

Page 9Lab 09 - Working with Containers

We will now use this dockerfile to build a new container image

8. In Windows Terminal, type the following commands to change directory to the location of
the dockerfile and build the image

<p>cd c:\lab_files\vce\containers
docker build -t nginx:task2 .</p>

 Click to copy

 NOTE: Make sure to include the . (dot / point) at the end of the 2nd command

Page 10Lab 09 - Working with Containers

9. Click the Docker Desktop User Interface, you'll notice there aren't any new containers at this
time

10. Select Images in the left pane
Notice you now have a new Image Names "nginx"

Now, let's run a new container from this local image just built

Page 11Lab 09 - Working with Containers

11. In Windows Terminal, type the following command to run (deploy) a new container from an
image

<p>docker run -d -p 8080:80 nginx:task2</p>

 Click to copy

12. Click the Docker Desktop User Interface
13. Select Containers in the left pane

You'll notice you now have a 2nd Container

14. Launch Firefox, Edge, or Brave
15. In the browser Address bar type

• http://localhost:8080/index.html

Page 12Lab 09 - Working with Containers

http://localhost:8080/help.html

16. In Windows terminal type the following commands to identify your docker images, stop and
delete them

<p>docker ps -a
docker stop {container_ID}
docker rm {container_ID}</p>

 Click to copy

17. In the docker GUI, confirm that the containers have been deleted

Page 13Lab 09 - Working with Containers

Conclusion

Containers require less system resources than traditional or hardware virtual

machine environments because they don't include operating system images.

Applications running in containers can be deployed easily to multiple different operating

systems and hardware platforms.

The use of containers to increase speed of deployment and portability for modern

applications is growing rapidly. Now part of the standard architecture for cloud-native

businesses, Gartner predicts that, by 2025, 85 percent of organizations will run

containers in production, up from less than 30 percent in 2020

The biggest advantage of using Containerization is that the applications are platform-

independent. A container will already contain everything that the application needs. It will

come with various configuration dependencies and files. This will allow you to run your

application on any computer you wan

Docker is a software platform that allows you to build, test, and deploy applications

quickly. Docker packages software into standardized units called containers that have

everything the software needs to run including libraries, system tools, code, and runtime.

Page 14Lab 09 - Working with Containers

Docker images contain all the dependencies needed to execute code inside a container, so

containers that move between Docker environments with the same OS work with no

changes. Docker uses resource isolation in the OS kernel to run multiple containers

on the same OS.

Docker is an open-source container technology used by developers and system admins

to build, ship, and run distributed applications. Docker has been a game-changer since

its release in 2013. It has become a massively popular containerization technology.

Page 15Lab 09 - Working with Containers

	Introduction
	TASKS
	Conclusion

